Positive solutions for boundary value problems of a class of second-order differential equation system

نویسندگان

چکیده

Abstract This article discusses the existence of positive solutions for system second-order ordinary differential equation boundary value problems − u ″ ( t ) = f , v accent="false">′ ∈ [ 0 1 ] g \left\{\begin{array}{l}-{u}^{^{\prime\prime} }\left(t)=f\left(t,u\left(t),v\left(t),u^{\prime} \left(t)),\hspace{1em}t\in \left[0,1],\\ -{v}^{^{\prime\prime} }\left(t)=g\left(t,u\left(t),v\left(t),v^{\prime} u\left(0)=u\left(1)=0,\hspace{1em}v\left(0)=v\left(1)=0,\end{array}\right. where xmlns:m="http://www.w3.org/1998/Math/MathML"> : × R + → f,g:\left[0,1]\times {{\mathbb{R}}}^{+}\times {\mathbb{R}}\to {{\mathbb{R}}}^{+} are continuous. Under related conditions that nonlinear terms x y p f\left(t,x,y,p) and q g\left(t,x,y,q) may be super-linear growth or sub-linear on x,y,p , q we obtain results solutions. For case, Nagumo condition F 3 \left(F3) is presented to restrict p . The f g described by inequality instead usual independent about discussion based fixed point index theory in cones.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation

This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.

متن کامل

Existence of positive solutions for fourth-order boundary value problems with three- point boundary conditions

In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...

متن کامل

Existence of positive solution to a class of boundary value problems of fractional differential equations

This paper is devoted to the study of establishing sufficient conditions for existence and uniqueness of positive solution to a class of non-linear problems of fractional differential equations. The boundary conditions involved Riemann-Liouville fractional order derivative and integral. Further, the non-linear function $f$ contain fractional order derivative which produce extra complexity. Than...

متن کامل

Positive Solutions for Second-Order Singular Semipositone Boundary Value Problems

which arises in many different areas of applied mathematics and physics. Singular problems of this type that the nonlinearity g may change sign are referred to as singular semipositone problems in the literature. Motivated by BVP (1.1), this paper presents the existence results of the following second-order singular semipositone boundary value problem: { u ′′ + f(t, u) + g(t, u) = 0, 0 < t < 1,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Mathematics

سال: 2023

ISSN: ['2391-5455']

DOI: https://doi.org/10.1515/math-2022-0586